| 1. | On diagonalization of idempotent matrices over apt rings 环上幂等阵的对角化 |
| 2. | On similarity and linear combinations of two idempotent matrices 关于幂等阵的相似与线性组合 |
| 3. | The method of idempotent matrices for k0 groups 0群的幂等阵方法 |
| 4. | A relation of idempotent matrices in dn 中幂等元的一种关系 |
| 5. | Idempotent matrices of degree s and the weighting generalized inverse matrices over z qkz 次幂等矩阵及矩阵的加权广义逆 |
| 6. | Chapter one and chapter two use normal form of idempotent matrices and antisymmetric matrices over finite fields to construct cartesian authentication codes respectively 第一章、第二章分别利用幂等矩阵及反对称矩阵的标准型构造了卡氏认证码。 |
| 7. | Some results on geometric lattice are involved in the present paper . here we recall some definitions and facts from geometric lattice , and then by the method of decomposition form of idempotent matrix over a finite field , one geometric lattice is obtained . at the same time , the present paper compute the characteristic polynomial and the parameters that involved in the geometric lattice 本文得到了构造几何格方面的一些结果,其中第一部分介绍几何格理论的基本概念;第二部分利用有限域f _ q上幂等阵的分解形,构造了一个几何格,并计算出该几何格的特征多项式及相应的一些参数。 |
| 8. | His students and cooperators construct geometric lattice by means of linear spaces , and discuss the geometric lattice that generated by various orbits or subspaces with the same dimension or rank under the action of classical groups over finite field . but the results on geometric lattice constructed by using matrices are very few . in the present paper , we construct geometric lattice with idempotent matrix 在国内,万哲先与他的学生和合作者们利用线性空间的办法,讨论了在有限域上的典型群作用下,由各个轨道或相同维数和秩的子空间生成的几何格。但是,利用矩阵构造几何格结果很少。 |